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Summary - Molar occlusal microwear texture and anisotropy analyses of 3 Australopithecus anamensis 
fossil specimens have shown complexity values similar to those of Au. afarensis, indicating that neither of 
these hominin species had a diet dominated by hard food. However, many researchers have suggested that 
these were some of the earliest hominins to have such diets. Here we examine buccal microwear patterns 
of 5 Au. anamensis, 26 Au. afarensis, 48 Hominoidea and 80 Cercopithecoidea primate specimens for 
independent evidence of dietary adaptations of Au. anamensis. The buccal microwear results obtained 
suggest that the diet of Au. anamensis relied heavily on hard, brittle food, at least seasonally. This is similar 
to the diet of the extant Cercopithecoidea primates, including Papio anubis and Chlorocebus aethiops, 
both of which live in wooded, seasonal savannah environments and have diets that include fruit and 
grasses, but also underground storage organs (USOs), such as corms or blades, as well as leaves and seeds, 
and also Mandrillus and Cercocebus, from forested environments with frugivorous-granivorous diets. 
Furthermore, the buccal microwear patterns of Au. anamensis and Au. afarensis clearly differed –in clear 
contrast to occlusal enamel texture observations–, which support previous dietary interpretations based on 
both anatomical and palaeocological reconstructions.

Keywords - Hominin, Diet, Feeding ecology, Buccal microwear, Fallback food, Australopithecus 
anamensis.

Introduction

Diet has been considered the major diver-
sifying factor affecting primate life history and 
evolution (Fleagle, 1999). However, it has been 
difficult to reconcile data from palaeoecological 
and dietary reconstructions. During the Pliocene 
(5.3-2.6 million years ago, ma) climatic condi-
tions in East Africa became progressively cooler 
and drier (Ravelo et al., 2004), with increas-
ing seasonality (Cerling et al., 1997). At the 
Miocene/Pliocene boundary, C4 ecosystems 
(grasslands) expanded due to a decrease of 
atmospheric CO2 (Cerling et al., 1993, 1997), 
and a retreat in C3 plants (trees and shrubs) 

throughout the Pliocene has been documented 
(Cerling, 1992; Morgan et al., 1994; Ségalen et 
al., 2007; Cerling et al., 2010). In East Africa, 
these climatic and ecological changes led to a sig-
nificant faunal shift (Cerling et al., 1997). The 
most documented hominin remains from this 
period, classified into the Ardipithecus genus, 
come from Ethiopia and date back to 4.4 ma 
(WoldeGabriel et al., 1994, 2009; White et al., 
2006, 2009a). Their dental and masticatory 
morphology, as well as their occlusal microwear 
patterns and stable isotopes content, suggest that 
Ardipithecus ramidus was an omnivorous, though 
mainly frugivorous species (Suwa et al., 2009a,b; 
White et al., 2009a), with a less abrasive diet than 
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Australopithecus afarensis, that included small 
amounts of 13C-enriched-plants, or animals that 
fed on them. This dietary reconstruction fits well 
with the general palaeoenvironmental frame-
work inferred for Ardipithecus ramidus: a closed, 
semi-deciduous wooded habitat (WoldeGabriel 
et al., 1994, 2009; Louchart et al., 2009; White 
et al., 2009b) that included areas of closed to 
grassy woodlands as well as true forests (White et 
al., 2009b) with abundant palms (WoldeGabriel 
et al., 2009). However, it has been argued that 
neither the faunal assemblage (Benefit, 1999; 
Leakey, 1999) or the stable isotope data (Cerling 
et al., 2010, p. 1105-d) reveal the predominance 
of closed wooded conditions, but of ‘tree or bush 
savannahs’. If Ardipithecus is ‘the probable ances-
tral morphotype of Pliocene Australopithecus’ (Suwa 
et al., 2009a, p. 68e7), it might also represent the 
ancestral dietary condition for the australopith-
ecine species Au. anamensis and Au. afarensis, 
who inhabited the palaeo-Solali-Masai province 
(Brandy et al., 1980). Their first occurrence in 
the fossil record predates the mid-Pliocene cool-
ing (2.95-2.52 ma) which caused increasing arid-
ity and the expansion of open habitats (Burckle, 
1995; deMenocal, 1995; Denton, 1999; Bobe et 
al., 2002).

Palaeoenvironmental reconstructions have 
suggested that Au. anamensis inhabited a wide 
range of environments, including open wood-
lands and bushlands with abundant grasses 
(Andrews & Humphrey, 1999) and gallery for-
ests, both at Kanapoi and Allia Bay, in a close 
relationship with the proto-Omo river (Leakey et 
al., 1995) and with significant climatic seasonal-
ity (Brown & Feibel, 1991). Up to 3.5 ma the 
climate was wet (Denys, 1999) and despite the 
later expansion of arid savannahs (Denton, 1999; 
Foley, 1999), the palaeoecological reconstructions 
for Au. afarensis are similar to those described for 
Au. anamensis, with a whole range of habitats, 
from grassland savannahs to wooded bushlands 
or woodlands (White et al., 1993; Reed, 1997; 
Wood & Richmond, 2000; Bonnefille et al., 
2004; Grine et al., 2006b). These reconstruc-
tions indicate that both species inhabited more 
open and dryer environments than Ardipithecus 

ramidus and lived under significantly fluctuating 
climatic conditions (Denton, 1999) with marked 
seasonality (Macho et al., 2003).

The anatomical differences in the mastica-
tory complex (Suwa et al., 2009a), especially in 
dental enamel thickness and megadontia (Suwa 
et al., 2009b), between Ardipithecus ramidus 
and Australopithecus anamensis make it unlikely 
that the two species had similar dietary hab-
its. Australopithecus anamensis and Au. afarensis 
would not have shared a common diet either, 
since the robust mandibular corpus and enlarged, 
low-crowned thick-enamelled postcanine teeth 
of Au. afarensis have traditionally been associ-
ated with the progressive expansion of savannah 
environments and a reduction of the tree cover-
age (Leakey et al., 1995; Ward et al., 1999, 2001; 
Teaford & Ungar, 2000), forcing Au. afarensis to 
greater consumption of hard food, either brittle 
or tough, as the availability of soft food decreased 
through time. However, the similarities in the pal-
aeoecological reconstructions of the two species 
and their close phylogenetic relationship (Strait 
& Grine, 2004; Kimbel et al., 2006) may suggest 
that they would have inhabited similar environ-
ments and, thus, shared dietary habits. Occlusal 
dental microwear (Grine et al., 2006a,b), buccal 
dental microwear (Estebaranz et al., 2009), and 
occlusal texture (Ungar et al., 2010) analyses have 
consistently shown that Au. afarensis would have 
been an active fruit pursuer relying also on fall-
back food during the dry season. Thus, the dis-
tinct dental morphology, enamel microstructure 
and megadontia of Au. anamensis (Ward et al., 
1999; Macho et al., 2005; White et al., 2006) 
have been considered responses to the mechani-
cal properties of the fallback food consumed by 
this ancestral, hard object feeder (Grine et al., 
2006a), despite the fact that recent occlusal 
enamel texture analyses have brought this view 
into question, suggesting that neither Au. ana-
mensis or Au. afarensis had a diet dominated by 
hard foods (Ungat et al., 2010).

The aim of this research was to further elabo-
rate on the dietary adaptations of Au. anamensis 
from the independent analysis of the buccal den-
tal microwear patterns of fossil specimens and to 
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compare the results obtained with the various 
reconstructions and conclusions, especially from 
occlusal microwear analyses, that have been pro-
posed in relation to the dietary adaptations of 
this hominin species.

Materials and Methods

The Au. anamensis hominin dental sample 
studied consisted of 59 casts of teeth moulded 
from the original specimens during the course of 
an international collaborative project (Galbany et 
al., 2004a). The teeth belong to 18 fossil speci-
mens (Tab. 1), 4 from Kanapoi and 14 from Allia 
Bay (East Rudolf ), both in Kenya. The sample 
studied was identical to that described in Grine 
et al., (2006a, 2010), and included all the Au. 
anamensis dental remains recovered before 2003. 
The Asa Issie dental remains were published later 
(White et al., 2006), but we agree with Grine et 
al. (2006a) that the teeth from that site (White 
et al., 2006) might not show well-preserved 
enamel surfaces. As for the Aramis remains, the 
ARA-VP-2/334 molars are completely cracked 
(White et al., 2006) and, as far as can be seen in 
the published images, they seem to show altered 
buccal surfaces. However, the ARA-VP-14/1 
specimen might have well-preserved buccal sur-
faces on LM3 and RM2-M3 teeth; but it was not 
possible to include them in the present buccal 
microwear comparison, as was also the case for 
the Ardipithecus specimens, whose buccal micro-
wear has not yet been analysed.

A large primate (both Hominoidea and 
Cercopithecoidea) comparative sample was also 
analysed, which represents various ecological 
and environmental dietary adaptations. The 
Hominoidea sample included Gorilla gorilla 
gorilla (N=32), and Pan troglodytes troglodytes 
(N=10), both from Cameroon, as well as Pan 
troglodytes verus (N=7) from Liberia (Galbany 
et al., 2009), since their habitat preferences 
might be similar to that inferred for Allia Bay 
(Schoeninger et al., 2003), including from closed 
forests to semi-open wooded habitats, and with 
dietary habits ranging from succulent soft fruit 

to leafs, stems and bark. Gorillas have highly 
selective diets year-round, consisting mainly of 
staple piths, leaves, roots and shoots from abun-
dant monocotyledonous plants, from either firm 
forests or swampy areas. Their diet also includes 
seasonal ripe fruit, from a wide variety of spe-
cies, and fallback food, often of lower nutritional 
quality, such as leaves, bark and fibrous fruit 
(Doran & McNeilage, 1998; Doran et al., 2002; 
Rogers et al., 2004). Chimpanzees occupy tropi-
cal forests and dry arboreal savannahs. They fre-
quently feed on the ground, walking from one 
feeding site to another, mainly consuming fruit 
and nuts, which account for up to 70-80% of 
their total food intake; other resources, such as 
leaves and stems, account for up to 20% of the 
chimpanzee’s total food intake, although these 
proportions vary greatly among populations 
(Estes 1997; Tutin et al., 1997).

The Cercopithecoidea sample included Papio 
anubis (N=27), Chlorocebus aethiops (N=15), 
Cercopithecus sp. (N=10) –including C. mitis 
(N=7) and C. neglectus (N=3)–, Mandrillus sphinx 
(N=4), Cercocebus torquatus (N=3), and Colobus 
sp. (N=21) –including C. polykomos (N=11), C. 
guereza (N=3), C. badius (N=5), and C. angolensis 
(N=2)– (Galbany & Pérez-Pérez, 2004; Galbany 
et al., 2005a; Galbany, 2006). The ecological and 
dietary preferences of the cercopithecoid com-
parative groups differ significantly. The two spe-
cies included in the Cercopithecus sp. group live 
in closed wooded habitats (Schultz, 1970) and 
are mainly frugivorous, although their diet may 
also include insects, flowers and other plant parts 
(Beeson et al., 1996; Fleagle, 1999; Tweheyo 
& Obua, 2001; Nakagawa, 2003). Chlorocebus 
aethiops was not included in this group because 
it has been suggested that its dietary preferences 
include a large variety of food with a limited 
number of staple foodstuffs and a wide supple-
ment based on seasonality (Lee, 1984; Lee & 
Hauser, 1998). Mandrillus sphinx and Cercocebus 
torquatus, two closely related species (Harris & 
Disotell, 1998; Fleagle & McGraw, 1999; Page 
& Goodman, 2001; Gilbert, 2007), are terres-
trial monkeys (Nakatsukasa, 1996; McGraw & 
Bshary, 2002) from forested environments that 
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share a mainly frugivorous-granivorous diet 
(Lahm, 1986;  Fleagle & McGraw, 1999, 2002; 
Wieczkowski, 2009). Fruit and seed consump-
tion in Mandrillus represents almost 90% of 
their diet (Lahm, 1986), but they also forage rot-
ten wood, leaves, fibrous matter, bark and her-
baceous plants, as well as nuts and arthropods 
(Norris, 1988). Despite fruit intake accounting 
for up to 40% of their diet, hard objects col-
lected from the ground, such as arthropods, 
seeds, bark, roots and nuts, are frequently con-
sumed (Hoshino, 1985; Norris, 1988; Rogers 
et al., 1996). They also face seasonality, with a 
decrease in fruit consumption during the dry 
season (Lahm, 1986). Colobus is an arboreal 
genus (Oates et al., 1994), traditionally classified 
as a genuine leaf-eater (Oates & Davies, 1994), 
but more recently considered to have a more 
heterogeneous diet. Despite some groups appear 
to be clearly folivorous (Chapman et al., 2002; 
Chapman & Pavelka, 2005), in others fruit 
and seed consumption might be greater than 
expected (DaSilva, 1992; Davies et al., 1999, 
Daegling & McGraw, 2001; Fashing, 2001; 
Chapman et al., 2002). Finally, the diet of Papio 
is mainly composed of resources obtained from 
grasses, including USOs (Underground Storage 
Organs), such as corms, blades and seeds (Alberts 
et al., 2005), as well as green Acacia seeds, fruit 
and leaves (Altmann & Altmann, 1970; Fleagle, 
1999; Hill & Dunbar, 2002; Alberts et al., 2005). 
Flowers and meat constitute a minor category in 
their diet (Lahm, 1986; Hill & Dunbar, 2002; 
Kunz & Linsenmair, 2008) and some preferred 
foodstuffs (fruit, green seeds, flowers and green 
grasses) are seasonal (Alberts et al., 2005).

Dental casting and buccal microwear procedures
High-resolution negative impressions were 

made using President Microsystem Regular Body 
polyvinylsiloxane (ColtèneTM) and positive casts 
were made with the two-component polyure-
thane Feropur PR-55 (FerocaTM) and epoxy resin 
Epo-Tek 301 (Epoxy TechnologiesTM), both 
of which provide excellent microscopic detail 
(Rose, 1983; Galbany et al., 2004b, 2005a). The 
hominin dental casts were made by M. Teaford 

(Baltimore, USA) and those of the primates were 
made by J. Galbany (Barcelona, Spain). All repli-
cas were mounted on aluminium stubs with term 
fusible gum and sputter coated with a 400-Å 
gold layer for SEM observation (Galbany et al., 
2004b; Estebaranz et al., 2009). A colloidal silver 
layer was applied to the gum in order to prevent 
electron saturation during SEM observation.

Since post-mortem damage is a major con-
cern for dental microwear, all casts were exam-
ined under a NikonTM binocular lens at 10-30X 
magnification before SEM observation, and 
fossil teeth showing post-mortem physical abra-
sion or chemical erosion (Hobson et al., 2002) 
were excluded (Teaford, 1988, 2007b; King et 
al., 1999; Martínez & Pérez-Pérez, 2004), which 
generally results in a significant reduction of the 
final sample available (Galbany & Pérez-Pérez, 
2004; Grine et al., 2006a,b; Estebaranz et al., 
2009). SEM images of the well-preserved buccal 
enamel surfaces were obtained using Cambridge 
Stereoscan 360 and 120 scanning electron 
microscopes in secondary electron detection 
mode; the working distance was fixed at 25 mm 
and the acceleration voltage was set to 15 kV. 
Buccal enamel surfaces of dental crowns were 
allocated in the SEM vacuum chamber perpen-
dicular to the electron beam and digital micro-
photographs were taken at 100X magnification, 
avoiding the occlusal and cervical rims, and were 
processed with PhotoshopTM v.6 with a high-pass 
filter (50 pixels) and automatic level adjustment. 
The images were then cropped to fit exactly a 
0.56 mm2 enamel patch (Lalueza et al., 1996; 
Galbany et al., 2004b; Estebaranz et al., 2009).

Microwear patterns of buccal dental enamel 
surfaces differ significantly from the microwear 
features that can be observed on occlusal enamel 
surfaces, which include both pits and scratches 
of various shapes and sizes. Pits are rarely present 
on well-preserved buccal surfaces (Fine & Craig, 
1981; Puech & Albertini, 1984; Ungar & Teaford, 
1996; Jarosova, 2007; Galbany et al., 2009), on 
the occlusal rims (Ungar & Spencer, 1999) or on 
occlusal shearing facets lacking crushing phases 
(Goswami et al., 2005, Schubert & Ungar, 2005; 
Williams et al., 2009). Microwear striations >15 
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µm (Galbany et al., 2004b) were counted and 
classified, and orientation with respect to the 
horizontal cemento-enamel junction was resolved 
into four 45-degree categories: horizontal (H), 
vertical (V), mesio-oclusal to disto-cervical 
(MD) and disto-occlusal to mesio-cervical (DM) 
(Galbany et al., 2004b). The striation densities 
(N), average length (X), and standard deviation 
of the length (S) were measured for each orien-
tation category and for all observed striations 
(T), obtaining 15 quantitative variables (striation 
densities: NT, NV, NH, NMD, NDM; striation 
lengths: XT, XV, XH, XMD, XDM; and stria-
tion length variability: ST, SV, SH, SMD, SDM) 
(see Pérez-Pérez et al., 1994, 1999, and 2003 for 
detailed variable definitions).

Statistical analysis
The microwear patterns of the Au. anamensis 

and Au. afarensis teeth were measured by Ferran 
Estebaranz, (Estebaranz et al., 2009), and those 
of the primate comparative samples were meas-
ured by Jordi Galbany (Galbany & Pérez-Pérez, 
2004; Galbany et al., 2005a, 2009). The intrao-
bserver measuring errors of the two researchers 
were similar and their interobserver error was 

small (Galbany et al., 2005b; Estebaranz et al., 
2009). All statistical analysis and comparisons 
were made using SPSS v. 15 and XLSTAT for 
MS-EXCEL. Despite all buccal microwear vari-
ables following normal distributions in both the 
primate comparative samples and the Au. afaren-
sis teeth analysed (Estebaranz et al., 2009), since 
the final, well-preserved sample available for Au. 
anamensis was very small (N=5), and a signifi-
cant degree of heterogeneity was found within 
the sample, group comparisons were made with 
Kruskal-Wallis and Mann-Whitney non-para-
metric tests, although basic parametric statistics 
were provided and a descriptive linear discrimi-
nant analysis (LDA) was used to show similari-
ties between groups.

Results

The initial Au. anamensis sample consisting 
of 59 teeth from 18 specimens showed signifi-
cant post-mortem damage. Only 14 teeth (24%) 
belonging to 6 individuals (33%) exhibited well-
preserved buccal microwear patterns (Tab. 1). 
However, since specimen KNM-KP-347235 

Kanapoi

KNM-KP-29283 RI2, RM?, RC1, RP3, RM?, LI1, LM?, LC1-M1, LM2, LI2

KNM-KP-29287 LI1, LI2, RI2, RP3, RP4, LP4, RM1, LM1, RM2, LM2, LM3, RM3

KNM-KP-30502 RM1, RM2, RM3, LM3

KNM-KP-34725 RI2, RI2, Rdc1, RM1, RM2, Rm2, Ldc1, LM1, LM2, Li2, Lm1, LP3, LI1

Allia Bay

KNM-ER-19981 ? KNM-ER-20420 LM? KNM-ER-20421 RM3

KNM-ER-20422 LM1 KNM-ER-20423 LM2? KNM-ER-20427 LM2

KNM-ER-20428 LM3 KNM-ER-20432 LP3, LP4 KNM-ER-35231 RM2

KNM-ER-35232 RM? KNM-ER-35233 LM2 KNM-ER-35325 RM2

KNM-ER-35236 LM3 KNM-ER-35238 RM1

Tab. 1 - Fossil specimens of Australopithecus anamensis analysed (references in bold indicate speci-
mens with well-preserved buccal microwear patterns).
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was only represented by two deciduous canines, 
it was not considered in the dietary reconstruc-
tion (only permanent postcanine teeth were 
used). Thus, only 5 Au. anamensis specimens, 
representing 29% of all the specimens studied, 
could finally be compared with Au. afarensis and 
the other primate species. This low preservation 
value is similar to those observed in previous 
hominin microwear analyses (Grine et al., 2006a; 
Estebaranz et al., 2009). SEM images of the ana-
lysed enamel surfaces of Au. anamensis and Au. 
afarensis specimens are shown in Figure 1; and 
SEM images of a representative specimen of each 
comparative primate taxa are shown in Figure 2.

The buccal microwear patterns of all the 
permanent teeth studied (N=12; 2 incisors, 2 

premolars, and 8 molars) of Au. anamensis are 
shown in Appendix 1. Homogeneity in micro-
wear patterns by tooth type could not be tested 
for due to the reduced sample available, though 
the postcanine teeth showed fairly similar NT 
and XT values. Interestingly, the central incisor 
had a large overall microwear density (NT=329) 
compared to the posterior dentition (NT rang-
ing from 166 to 271), and was much higher 
than that of the lateral incisor (NT=155) and 
than the density values observed in Au. afarensis 
(NT=150.69) (Estebaranz et al., 2009).

The second permanent molar (M2) was the 
most represented tooth in the Au. anamensis 
sample (5/12), belonging to 4 different fossil 
specimens (KNM-KP 29287, KNM-KP 29283, 
KNM-ER 35231, and KNM-ER 35233); an 
additional specimen (KNM-ER 35236) was 
included by selecting its M3 tooth. The buccal 
microwear patterns of these 5 selected teeth and 
the sample variable averages and standard devia-
tions are shown in Appendix 1. The average val-
ues and standard deviations of all 15 variables for 
Au. afarensis and the comparative primate sam-
ples are shown in Appendix 1. Australopithecus 
anamensis showed a high overall density of stria-
tions (NT=220.60±46.68), in the same range as 
the frugivorous and seed-eater Cercopithecoidea 
samples: Cercocebus (NT=249.33±18.23), 
Chlorocebus aethiops (NT=210.60±9.90), 
Mandrillus sphinx (NT=213.75±7.56) and 
Cercopithecus sp. (NT=244.00±14.18). The 
average striation density of Australopithecus ana-
mensis was considerably higher than that of the 
other East African Pliocene hominin Au. afa-
rensis (NT=150.69±52.51), though the density 
of the horizontal striations in Au. anamensis 
(NH=38.4±40.74) was similar to that of Au. afa-
rensis (NH=41.80±16.49) and Gorilla g. gorilla 
(NH=40.10±22.61). However, the density of its 
vertical striations (NV=77.6±34.79) more closely 
resembled Papio anubis (NV=85.82±5.01), 
Chlorocebus aethiops (NV=81.00±6.57), and 
even Cercopithecus sp. (NV=108.80±4.74), 
than Au. afarensis (NV=28.31±24.01), Gorilla 
(NV=53.26±29.58) or Pan (NV=40.40±23.82 
for P. t. troglodytes and NV=20.14±8.45 for P. t. 

Fig.  1 - Well-preserved buccal microwear SEM 
images of the 5 Au. anamensis samples ana-
lysed (a: KNM-KP-29287, b: KNM-KP-29283, 
c: KNM-ER-35231, d: KNM-ER-35233, e: 
KNM-ER-35236) and of one Au. afarensis speci-
men (f: LH 4). Scale bar is 100 µm.
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verus). The low average NDM value for Au. ana-
mensis (NDM=28.00±25.42) was only compara-
ble to that of Colobus sp. (NDM=30.62±18.36) 
and Papio anubis (NDM=20.44±15.69), as the 
NDM values of the Hominoidea ranged from 
39.90 to 47.42 (Appendix 2). The box-plots of 
total striation densities (NT) and average stria-
tion lengths (XT) for Au. anamensis, Au. afaren-
sis and the comparative primate samples (Fig. 3) 
showed that Au. anamensis shared high striation 
densities with the Cercopithecoidea samples, and 
clearly deviated from Au. afarensis and the non-
hominin Hominoidea. This was an unexpected 
result considering the similarities in occlusal 
microwear patterns between Au. anamensis and 

Au. afarensis reported by Grine et al. (2006a, 
2010), as well as between those of Pan and 
Gorilla, which showed clear dissimilarities with 
Colobus (Grine et al., 2006a).

For the intergroup comparisons with non-
parametric tests, outliers for the total density of 
striations (NT) were removed from the primate 
samples analysed and, based on dietary and eco-
logical data, 10 groups were finally considered: 
Au. anamensis (N=5),  Au. afarensis (N=26), 
Cercopithecus (N=8), Chlorocebus (N=13), 
Papio (N=25), Colobus (N=19), Mandrillus-
Cercocebus (N=7), Gorilla (N=29), Pan t. troglo-
dytes (N=10), and Pan t. verus (N=7). Kruskal-
Wallis analysis revealed statistically significant 

Fig. 2 - SEM images of primate specimens studied: a: Cercocebus torquatus IMAZ 9851; b: 
Cercopithecus sp. NMK om7551; c: Chlorocebus aethiops NMK om0362; d: Mandrillus sphinx HMCZ 
34172; e: Papio anubis NMK om6992; f: Colobus sp. HMCZ 37932; g: Gorilla gorilla gorilla NHML 
36.7.14.1; h: Pan troglodytes troglodytes NHML 50.1863; i: Pan troglodytes verus PMAE 7544. 
(IMAZ: Anthropologisches Institut und Museum Universitaet Zuercih Irchel; NMK: National Museums 
of Kenya; HMCZ: The Museum of Comparative Zoology – Harvard University; NHML: Natural History 
Museum of London; PMAE: Peabody Museum of Archaeology and Ethnology – Harvard University).
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differences between groups for 10 of the 15 buc-
cal microwear variables analysed: NH (H=28.82, 
P=0.001), XH (H=33.66, P=0.000), SH 
(H=18.10; P=0.034), NV (H=81.22, P=0.000), 
SV (H=18.59, P=0.029), NMD (H=23.44; 
P=0.005), XMD (H=27.16; P=0.001), NDM 
(H=35.88, P=0.000), NT (H=66.50, P=0.000), 
and XT (H=22.20; P=0.008). The comparison 
of Au. anamensis with the other samples, using 
U-Mann-Whitney tests, revealed statistically 
significant differences in NT with Au. afarensis 
(U=15, P=0.007), Pan t. verus (U=1, P=0.007), 
Papio anubis (U=25, P=0.037), and Colobus (U=6, 
P=0.003); in NV with Au. afarensis (U=13.5, 
P=0.006), Pan t. verus (U=2.50; P=0.015), and 
Colobus sp. (U=10, P=0.008); in NDM with 
Mandrillus-Cercocebus (U=5, P=0.041); in SV 
with Pan t. verus (U=5, P=0.042); and in ST also 
with Pan t. verus (U=2, P=0.012).

Descriptive LDA did not include the 
length variability variables (ST, SV, SH, SMD, 
SDM), since significant correlation coefficients 
(Spearman rho) between length variability and 

density variables were observed for all the sam-
ples analysed (N=148; Appendix 3), and the aim 
was to describe group relationships based only 
on striation densities and average lengths, which 
were the most discriminant microwear vari-
ables. Uncorrelated discriminant functions (Flury, 
1988, p.5) of the 10 original variables were thus 
obtained. Significant differences in microwear 
patterns were observed (Wilk’s λ=0.153, F=3.405, 
P<0.0001), with all variables showing significant 
differences between groups (P<0.05) except XDM 
(P=0.287). The first two discriminant functions 
(DF) obtained accounted for 72.88% of the total 
variance (Fig. 4); DF1 (57.33%) was mainly cor-
related with NV (r=0.940) and NT (0.653), and 
DF2 (15.54%) was correlated with NDM (0.757) 
and NT (0.635). All the length variables were neg-
atively correlated with DF1, with r values ranging 
from –0.197 to –0.280. The first two DFs were 
plotted to show group centroid similarities and 
95% confidence intervals of the sample means 
(equiprobable ellipses) (Fig. 4). A clear separation 
between the Hominoidea and Cercopithecoidea 

Fig. 3 - Box plots of NT (total striation density) and XT (average length of all striations) for Au. 
anamensis, Au. afarensis and the primate comparative samples (including Cercopithecoidea and 
Hominoidea). The two australopithecine samples show clearly distinct striation density values (NT), 
with Au. anamensis more closely resembling those of the cercopithecines than Au. afarensis.



www.isita-org.com

9F. Estebaranz et al.

groups was observed for DF1, with the excep-
tion of Colobus which showed close similarities in 
microwear pattern with Pan t. troglodytes, perhaps 
reflecting its heterogeneous, non-exclusive folivo-
rous diet. The joint group formed of Mandrillus 
and Cercocebus fell between the Cercopithecoidea 
and Hominoidea samples for DF1, though not for 
DF2; their mainly frugivorous dietary habits could 
account for the overlap with Gorilla and Pan t. 
troglodytes for DF1, and their terrestrial behaviour 
could be responsible for their high and variable 
DF2 values (Fig. 4).

In order to show overall similarities between 
microwear patterns of all the groups consid-
ered, Mahalanobis distances (∂) between group 
centroids were computed within the descriptive 

LDA. The buccal microwear pattern of Au. ana-
mensis clearly differed from that of Au. afarensis 
(∂ = 346.6). The best analogues for Au. anamensis 
were the cercopithecine species Papio anubis (∂ = 
4.1), a mainly terrestrial, seasonal fruit and seed 
consumer, and Chlorocebus aethiops (∂ = 5.9), with 
a seasonal, very heterogeneous diet. These were 
followed at greater distances by the terrestrial, 
forest-dweller Mandrillus and Cercocebus spe-
cies (∂ = 98.8), the non-terrestrial, from wooded 
habitats, mainly frugivorous Cercopithecus sp. (C. 
mitis and C. neglectus) (∂ = 232.1), and the foliv-
orous, though also frugivorous Colobus species (∂ 
= 232.3). The most distant groups were Gorilla 
(∂ = 317.4), Pan t. troglodytes (∂ = 328.6) and, 
especially, Pan t. verus (∂ = 1,763.2).

Fig.  4 - Descriptive linear discriminant analysis of the 10 groups considered, including Au. anamen-
sis and Au. afarensis. DF1 was mainly correlated with NV and NT; while DF2 was correlated with 
NDM and NT (see description in the text). Despite its high dispersion range, Au. anamensis clearly 
clusters with the cercopithecines, whereas Au. afarensis only overlaps with Pan confidence inter-
vals. Ellipses include 95% confidence intervals of the sample means.
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A second, predictive LDA was performed 
to predict group membership of Au. anamensis 
specimens using all 15 buccal microwear vari-
ables of the 9 comparative groups defined. Since 
the probability of group membership is highly 
dependent on the sample sizes (Lachenbruch & 
Goldstein, 1979), the group sizes was considered 
when assigning the a priori probabilities within 
the LDA (Marks & Dunn, 1974; Lachenbruch 
& Goldstein, 1979), to avoid overclassification 
into groups with larger covariances (Chan, 2005). 
The first two DFs derived explained 69.1% of 
total variance (DF1 46.4%, DF2 22.7%), with 
Wilks λ being highly significant even if the first 
two DFs were removed (P=0.002). DF1 was 
significantly correlated with NV (r=0.874) and 
NT (r=0.568), and DF2 was mainly correlated 
with XH (r=0.389), XMD (r=0.377), and SV 
(r= –0.336). The overall post-hoc probability of 
correct classification was 62.5% (41.7% after 
a leave-one-out cross-validation test), and the 
groups showed highly variable percentages of cor-
rect classification: 20.0% Pan t. troglodytes, 38.5% 
Chlorocebus, 42.9% Mandrillus-Cercocebus, 
57.9% Colobus, 58.6% Gorilla, 71.4% Pan t. 
verus, 75.0% Cercopithecus, 76.9% Au. afaren-
sis, and 84.0% Papio. All 5 Au. anamensis speci-
mens showed buccal microwear patterns similar 
to those of the cercopithecines: 2 were classified 
as Papio (ER-35233, 71.5% post-hoc classifica-
tion probability; and ER-35236, 76.4%), 1 as 
Chlorocebus (KP-29287, 89.2% probability), 1 
as Cercopithecus (ER-35231, 95.3%), and 1 as 
Mandrillus-Cercocebus (KP-29283, 60.7%): none 
of them was classified as Gorilla, Pan or Au. afa-
rensis. This suggests that Au. anamensis shows a 
buccal microwear pattern that is clearly distinct 
from those of the Hominidea groups compared, 
including Au. afarensis.

Discussion

The buccal microwear pattern of Au. ana-
mensis showed higher striation densities than 
any Plio-Pleistocene hominin analysed to date, 
including not only Au. afarensis (Estebaranz et 

al., 2009) but also Paranthopus boisei and Homo 
(Martínez, 2010). Given the similarities in pal-
aeoecological reconstructions of Au. anamensis 
and Au. afarensis (Brown & Feibel, 1991; Leakey 
et al., 1995; Andrews & Humphrey, 1999), simi-
larities in microwear patterns (and, by extension, 
of the African great apes) would also be expected. 
However, clear differences between Au. anamen-
sis and the Hominoidea were observed, which is 
in agreement with the assumption of Macho & 
Shimizu (2010, p. 23) that “it is more parsimoni-
ous to conclude that the habitual diet of Au. ana-
mensis differed considerably from that of the extant 
African great apes”.  Furthermore, the robustness 
of the mandibular corpus of Au. anamensis has 
been seen to suggest a distinct diet for this species 
from those of both the Plio-Pleistocene hominins 
and the extant apes (Teaford & Ungar, 2000).

The similarities observed in the buccal 
microwear pattern between Au. anamensis and 
the extant Cercopithecoidea species Papio and 
Chlorocebus indicate that Au. anamensis might 
have exploited gritty savannah and woodland 
resources (Wynn, 2000); its dietary preferences 
would have included, in addition to succulent 
fruit, hard items such as seeds, nuts, tubers, bark, 
and roots similar to those consumed by the pap-
ionini. The buccal microwear results reported 
here support the prior assumptions that the diet 
of Au. anamensis probably included hard food-
stuffs (Teaford & Ungar, 2000; Macho et al., 
2005; White et al., 2006), including hard foods, 
such as sedges and USOs, and brittle resources, 
such as seeds and nuts. Some seeds (such as 
Brachystegia) and nut bearing trees, from which 
Au. anamensis could have fed, might have been 
present at Allia Bay (Schoeninger et al., 2003). 
The palaeoenvironmental reconstructions also 
indicate that fossil remains of Au. anamensis are 
associated with fluvial and lacustrine environ-
ments, both at Kanapoi (Leakey et al., 1995, 
1998) and Allia Bay (Feibel et al., 1991), which 
are typical of gallery woodlands. These habitats 
could also have provided Au. anamensis with 
soft food resources, such as fruit similar to those 
consumed by extant baboons, mangabeys and 
mandrills (Lahm, 1986; Lambert et al., 2004; 
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Wieczkowski, 2009). However, fruit would not 
have constituted the great bulk of its diet (Macho 
& Shimizu, 2010), as is the case for the extant 
Pan and Gorilla species (Williamson et al., 1990).

Australopithecus anamensis dental traits 
have been interpreted as adaptations to crush-
ing hard food (Ward et al., 1999, 2001; Teaford 
& Ungar, 2000; White et al., 2006; Macho & 
Shimizu, 2010), which would be consistent 
with the highly scratched buccal enamel surfaces 
observed, in contrast to Au. afarensis (Estebaranz 
et al., 2009). In addition, Macho et al. (2003) 
have pointed out that Au. anamensis lived in sea-
sonal environments, similar to those seen in the 
present-day Masai-Mara region in Kenya, which 
constitute a great challenge due to food scar-
city during the dry season, when dietary habits 
need to rely on fallback food: highly abundant, 
poor quality non-preferred food (Marshall & 
Wrangham, 2007; Altmann, 2009; Marshal et 
al., 2009). Nevertheless, items collected from the 
ground, such as nuts or seeds, are less suscepti-
ble to seasonality (Norris, 1986), and baboons 
depend heavily on them during the dry season 
(Hoshino, 1985; Lahm, 1986; Altmann, 2009). 
Yet the intake of leaves and insects of Mandrillus 
increases during the dry season (Hoshino, 1985); 
Papio’s fallback food items are mainly corms of 
grasses and sedges (Alberts et al., 2005; Altmann, 
2009); and Mangabeys consume hard seeds and 
bark as fallback food when their preferred food 
is not available (Lambert et al., 2004). Taking 
the papionini as a model for Au. anamensis, it is 
feasible to consider that its diet might have also 
been affected by seasonality. However, it is dif-
ficult to assess the nature of the fallback food that 
it might have relied on, since this early australo-
pithecine species might have been a more extreme 
ecological generalist than the baboons (Codron 
et al., 2008). Dry seeds, sedges, grass corms and 
other USOs are good candidates for Au. anamen-
sis fallback food (Macho & Shimizu, 2010). The 
biomechanical demands of sedges and corms on 
teeth fit well with Au. anamensis’ microenamel 
structure adaptations (Macho & Shimizu, 2010). 
The importance of USOs in human evolution has 
already been highlighted (Laden & Wrangham, 

2005; Dominy et al., 2008), and analysis of sta-
ble isotopes has suggested that grasses and sedges 
(C4 plants and/or animals that fed on them) were 
consumed by the australopithecines along with 
forest food (Sponheimer & Lee-Thorp, 2003). In 
fact, the consumption of C4 food and the C3:C4 
proportion in the baboons are similar to those of 
early hominins (Codron et al., 2008). Although 
Au. anamensis was contemporary to the expansion 
of open C4 grasslands (Cerling et al., 1992, 1997, 
2010), some studies point out that C4 grasses 
remained a minor part (circa 15%) of the envi-
ronment until the Late Pliocene (Haywood & 
Valdes, 2006; Ségalen et al., 2007). Nevertheless, 
the consumption of green blades of grass (a sea-
sonal preferred food for the baboons) and corms 
of grasses (a non-preferred USO) might constitute 
the consumed C4 food detected by stable isotope 
analysis in hominins. Despite all these considera-
tions, the analyses of Au. anamensis’ dental micro-
structure (Macho & Shimizu, 2010) and occlusal 
microwear patterns (Grine et al., 2006a; Ungar et 
al., 2010) have excluded hard, brittle items from 
the diet of Au. anamensis. Various reconstructions 
of the diet of Au. anamensis have been reported, 
though (Teaford & Ungar, 2000; Macho et al., 
2005; Grine et al., 2006a; Macho & Shimizu, 
2010). Despite the fact that Macho & Shimizu 
(2010) argue that such differences could be due 
to methodological limitations, they might just 
as well be interpreted as “different dietary/lifestyle 
regimes at different periods over the human lifespan” 
(Nystrom, 2010, p. 215).

Previous microwear analysis has shown that 
buccal and occlusal patterns reflect the same 
dietary tendencies in recent human populations 
(Nystrom, 2010), Pliocene hominin Au. afaren-
sis (Grine et al., 2006a; Estebaranz et al., 2009) 
and Pleistocene P. boisei (Ungar et al., 2008; 
Martínez, 2010). However, the results reported 
here do not support previous interpretations of 
similarities in microwear patterns between Au. 
anamensis and Au. afarensis, or with those of Pan 
and Gorilla, based on occlusal microwear texture 
analysis, which led to the suggestion that the two 
hominin species “did not have diets dominated 
by hard, brittle foods” and “did not have diets 
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dominated by tough foods either” (Ungar et al., 
2010, p. 3345), despite the fact that it was “per-
haps surprising that the occlusal microwear data” 
suggested “that chimpanzees and gorillas constitute 
the best modern analogues for dietary preferences in 
Au. anamensis” (Grine et al., 2006a, p. 301).

The non-coincident buccal microwear 
interpretation made here could be attributed 
to differences in sample size or composition. 
However, the original sample studied in both 
analyses (occlusal and buccal microwear) was 
the same and two specimens (KNM-ER-35236 
and KNM-KP-29287) were included in both the 
buccal (N=5) and the occlusal (N=3) analyses; 
KNM-KP-34725 had no permanent teeth with 
well-preserved buccal microwear pattern, and 
KNM-ER-35231 and KNM-ER-35233 were 
not preserved enough for occlusal microwear 
analysis (Grine et al., 2006a). However, speci-
mens KNM-ER-35236 and KNM-KP-29287 
behaved congruently in both buccal and occlusal 
surface research: KNM-ER-35236 had low fea-
ture densities, below the species average, and 
KNM-KP-20287 showed highly featured sur-
faces in both analyses. Although the trend might 
be the same, the two techniques do not neces-
sarily explain exactly the same phenomenon 
(Nystrom, 2010). Buccal microwear long-term 
stability, both in human populations (Romero 
et al., 2012) and in Papio cynocephalus from 
Amboseli (J. Galbany, unpublished data), con-
trast with the faster turnover of occlusal micro-
wear patterns (Teaford & Oyen, 1989; Teaford 
& Tylenda, 1991), described as the “Last Supper 
Effect” (Grine, 1986; Ungar, 2009). Occlusal 
dental microwear patterns in primates record the 
effects of the diet from only the previous days 
or weeks before death (Teaford, 2007a), which 
makes analysis of large samples necessary (Ungar, 
2009). In contrast, although buccal microwear 
may also be affected by significant, short-term 
dietary changes, the overall population buccal 
microwear pattern will remain unchanged unless 
dietary shift homogeneously affected most of 
the specimens analysed over a long time period 
before death (Romero et al., 2012). Thus, the 
analyses of the two enamel surfaces could be 

complimentary, since they may be providing 
dietary reconstructions on different time scales 
(Nystrom, 2010). The simultaneous study of 
both buccal and occlusal microwear patterns of 
Pliocene samples, such as Cercopithecoidea pri-
mates from East Africa (Leakey et al., 1995; Frost 
& Delson, 2002), would provide relevant infor-
mation that would help to interpret the observed 
microwear discrepancies between occlusal and 
buccal patterns for Au. anamensis, since the 
palaeoenvironmental changes affected the two 
groups in similar ways, forcing them to include 
C4 food in their diets (Codron et al., 2008). 
The Kanapoi fossil assemblage includes over 30 
mammalian taxa (Leakey et al., 1995), although 
only Parapapio cf. ado and two colobine primate 
species were recovered (Leakey et al., 1995). 
Dietary reconstructions for both groups have 
indicated that their diet included leaves (Teaford 
& Leakey, 1992; Lucas & Teaford, 1994), 
although Parapapio from Kanapoi was supposed 
to have been more frugivorous than those from 
Laetoli and East Rudolf (Benefit, 1999). Until a 
detailed comparison between the two techniques 
is made on identical fossil specimens, with large 
samples, the significance of the non-coincident 
results cannot be fully ascertained.

Our buccal microwear results suggest that Au. 
anamensis would have had a significantly special-
ized diet that included food from open environ-
ments, such as grasses or sedges, as proposed for 
later hominin species (Sponheimer et al., 2005, 
2006a), although it could also have consumed 
resources from gallery forests. Moreover, cer-
copithecines (mainly papionini) constitute the 
best modern dietary analogue for Au. anamensis 
based on buccal dental microwear striation den-
sity (Fig. 5). This interpretation enhances previ-
ous studies that proposed baboons as a model 
for early hominin evolution (Sponheimer et al., 
2006b), based on habitat preferences (Reed, 
1997; Jolly, 2001), functional morphology (Jolly, 
1970, 2001), and their association with C4 envi-
ronment expansions (Lee-Thorp et al., 2003; 
Sponheimer et al., 2006a; Codron et al., 2008). 
Preliminary results on the occlusal microwear 
of Ardipithecus have shown that its diet was less 
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abrasive than that of Australopithecus (Suwa et al., 
2009b), and Ardipithecus dental enamel thick-
ness is consistent with such an interpretation: it 
is intermediate between Pan and Australopithecus 
(Leakey et al., 1995; Suwa et al., 2009b), reveal-
ing a soft or omnivorous diet (Ward et al., 1999; 
Suwa et al., 2009b), chimpanzee-like (Ward 
et al., 1999; Laden & Wrangham, 2005), with 
consumption of C3 plants (White et al., 2009a). 
The diet of Au. anamensis could therefore be 
interpreted as an adaptation to more demand-
ing, colder and dryer environments. The diverg-
ing buccal microwear patterns of Au. anamensis 
and Au. afarensis, which might constitute an 
anagenetically evolving lineage (Kimbel et al., 
2006), suggest that Au. afarensis would have 
returned (compared to its predecessor) to softer 
dietary habits, closer to those of Gorilla and Pan 
(Grine et al., 2006b; Estebaranz et al., 2009), at 
least during the favourable season, consuming 
fallback food, such as seed, bark or corms, dur-
ing the dry season, although the high turnover 

and remodelling observed on buccal enamel sur-
faces (Romero et al., 2012) might not allow to 
discriminate seasonal diets. An alternative view 
would be that Au. anamensis represents a dietary 
specialized stage from which Au. afarensis could 
have not derived. Still, the comparison of the 
buccal microwear pattern of Ardipithecus rami-
dus (which could differ from the occlusal one) 
with those of Au. anamensis and Au. afarensis will 
certainly shed more light on the Pliocene homi-
nin dietary adaptations and speciation processes.
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